

1 Variations of surface roughness on inhomogeneous underlying 2 surface at Nagqu Area over the Tibetan Plateau

3 Maoshan Li^{*1}, Lei Shu¹, Xiaoran Liu¹, Shucheng Yin¹, Lingzhi Wang¹, Wei Fu¹,
4 Yaoming Ma², Fanglin Sun³

5 (1.School of Atmospheric Sciences/Plateau Atmosphere and Environment Key Laboratory of Sichuan
6 Province/Joint Laboratory of Climate and Environment Change, Chengdu University of Information Technology,
7 Chengdu 610225, Sichuan China;

8 2. Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau
9 Research, Chinese Academy of Sciences, CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing,
10 China

3. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Chinese Academy
of Sciences, Lanzhou, China)

14 **Abstract:** Using the MODIS satellite data and station atmospheric turbulence observation data in
15 Nagqu area of northern Tibetan plateau in 2008, 2010 and 2012, with the Massman retrieved
16 model and an independent method to determine aerodynamic surface roughness, the temporal and
17 spatial variation characteristics of the surface roughness was analyzed. The results show that the
18 surface roughness has obvious seasonal variation characteristics. From February to August, Z0m
19 increases constantly with the ablation of snow and vegetation growth, and the maximum value
20 reaches 4-5cm at BJ site. From September to February, Z0m gradually decreased because of the
21 post-monsoon over the plateau, and the values decreased to about 1-2cm. The snowfall in
22 abnormal years is the main reason why Z0m is obviously lower than that in normal. The
23 underlying surface can be divided into four categories according to the different values of Z0m:
24 snow and ice, sparse grassland, lush grassland and town. Among them, lush grassland and sparse
25 grassland account for 62.49% and 33.74% respectively in the region, which are the main

* Corresponding author

Dr. Maoshan Li

Chengdu University of Information Technology

24 Block 1, Xuefu Road, Chengdu 610225, Sichuan, China

E-mail: jims@cuit.edu.cn

26 categories, and their Z0m annual changes are between 2-6cm and 1-4cm. The correlation between
27 the two methods are positively related to each other, and the retrieved data are smaller than the
28 measured results due to the average sliding action. On the whole, Z0m calculated by satellite data
29 retrieved algorithm is feasible, it can be applied to improve the model parameters of land surface
30 model parameters and the accuracy of model simulation, better reveal the heat flux exchange.

31 **Key words:** Northern Tibet Plateau; Surface roughness; NDVI; MODIS

32

33 1 Introduction

34 Known as the "third pole" of the earth (Jane, 2008), the Tibetan plateau has an average
35 altitude of over 4000m, accounting for a quarter of China's territory. It is located in the southwest
36 of China, adjacent to the subtropical tropics in the south and reaching the mid-latitude in the north,
37 making it the highest plateau in the world. Due to its special geographical location and
38 geomorphic characteristics, it plays an important role in the formation, outbreak, duration and
39 intensity of Asian monsoon especially in the global climate system. (Yang et al., 1998; Zhang et
40 al., 1998; Wu et al., 1999, 2004, 2005; Ye et al, 1998; Wu et al, 1998; Tao et al, 1998). Lots of
41 research shows that (Wu et al., 2013; Wang, 1999; Ma et al, 2002) the land-atmosphere interaction
42 on the Tibet plateau plays an important role in regional and global climate. Wang (Wang, 1999)
43 pointed out that high latitude areas and mountainous areas are sensitive areas of climate change,
44 especially the land-atmosphere interaction located in the plateau area of middle latitude (including
45 large areas of permafrost), which plays an extremely important role in regional climate and global
46 climate. The plateau monsoon is closely related to the intensity and location of the south Asian
47 high (Xun et al, 2002). The correlation between the dynamic index of plateau monsoon and the
48 pelagic meridional wind shows that there is a teleconnection in summer, indicating that the
49 teleconnection is the relationship between the plateau monsoon, the East Asian monsoon and the
50 South Asian monsoon. In the past 47 years, the Tibetan plateau has shown a significant warming
51 trend and increased precipitation. (Li et al., 2010) The thermal effects of the Tibetan Plateau not
52 only have an important impact on the Asian monsoon and precipitation variability, but also affect
53 the atmospheric circulation and climate in North America and Europe and the South Indian Ocean

54 by inspiring large-scale teleconnections similar to the Asia-Pacific Oscillation. (Zhou et al., 2009).

55 The various thermal and dynamic effects of the Tibetan Plateau on the atmosphere affect the
56 free atmosphere through the atmospheric boundary layer. Therefore, it is particularly important to
57 analyze the micro-meteorological characteristics of the atmospheric boundary layer of the
58 Qinghai-Tibet Plateau, especially the near-surface layer. (Li et al., 2000). Affected by the unique
59 underlying surface conditions of the Tibetan Plateau, local heating shows interannual and
60 interdecadal variability (Zhou et al., 2009). Land-atmosphere interaction refers to a series of
61 complex processes such as thermodynamics, dynamic, hydrology, biophysical and biochemical
62 processes that occur on land surface, and the interaction process between these processes and the
63 atmosphere (Su et al., 1999). Different underlying surfaces have different diversity, complex
64 composition and uneven distribution. They also make the land surface composed of them diverse
65 and complex. As the main input of atmospheric energy, the surface greatly affects the various
66 interactions between the ground and the atmosphere, and even plays a key role in local areas or
67 specific time (Guan et al., 2009). For this reason, the study of the land-atmosphere interaction on
68 the Tibetan Plateau has become one of the research hotspots in the past 30 years, and has received
69 more and more attention on the whole world.

70 The climate system is sensitive to anomalous changes in land surface conditions. The surface
71 characteristic parameters (dynamic roughness, thermodynamic roughness, etc.) play an important
72 role in the land surface process and are important factors in causing climate change (Jia et al.,
73 2000). There are different degrees of fluctuant on the underlying surface of the Tibetan Plateau,
74 which brings certain obstacles to understanding the land-atmosphere interaction of the Tibetan
75 Plateau. The fluctuant surface may alter the arrangement of roughness element which on the
76 surface and cause changes in surface roughness. Changes in roughness can also affect changes in
77 the characteristics of other surface turbulent transportation, which may also result in changes in
78 surface fluxes. Chen et al., (2015) presents a practical approach for determining the aerodynamic
79 roughness length at fine temporal and spatial resolution over the landscape by combining remote
80 sensing and ground measurements. And the surface roughness is an important parameter in the
81 land surface model and climate model. Its size reflects the matter energy exchange, transmission

82 intensity and interaction between the near surface airflow and the underlying surface to some
83 extent. (Liu et al., 2007; Irannejad et al, 1998; Shao et al, 2000; Zhang et al., 2003). Zhou et al.
84 (2012) demonstrated that simulated sensible heat flux compared with measurement was
85 significantly improved by using a time-dependent z_{0m} . Therefore, the primary objective of this
86 study is to calculate the surface roughness and its variation characteristics so that furthermore
87 understanding of land-atmosphere interactions on the central of the Tibetan Plateau.

88 The Nagqu area is located in the hinterland of the Tibetan Plateau and is located in the the
89 central of the Tibetan Plateau. It is the source of the Yangtze River, the Nujiang River, the Lhasa
90 River and the Yigong River. The whole terrain is inclined to the west and the east is low, with an
91 average elevation of over 4,500 meters. The altitude is high, the heat is insufficient, the climate is
92 cold and dry, and the oxygen content is only half of the sea level. The Tibetan Plateau is one of the
93 worst climatic conditions in Tibet. It is a typical sub-cold climate zone. Alpine and hypoxia, dry
94 climate, large temperature difference between day and night, windy weather. (Li et al., 2004)
95 However, there is a vast natural grassland here, so a complete mesoscale observation network
96 centered on the Nagqu climate observation and research station has been established, and a large
97 amount of valuable observation data has been obtained for more accurate description to provide
98 sufficient evidence for Plateau land-atmosphere interactions and atmospheric boundary layer
99 structures. The underlying surface of the Nagqu area is a vast highland plain, and the vegetation is
100 alpine grassland. However, the underlying surface has different degrees of ups and downs and has
101 certain complexity, which brings certain difficulties for the meticulous profound study of the
102 land-atmosphere interaction on the Tibetan Plateau.

103 In this study, the satellite data is obtained by MODIS, and the normalized difference
104 vegetation Index(NDVI) is studied through the Nagqu area to obtain the dynamic surface
105 roughness. And using three observation stations in the region, atmospheric turbulence observation
106 data from 2008, 2010, and 2012 and observation data from automatic weather stations, an
107 independent method for determining surface dynamics roughness Z_{0m} is applied (Chen et al.,
108 1993). Analyzed time-scale dynamics of Z_{0m} and the different results of different underlying
109 surfaces. Through a comparative research on studying whether the value of surface roughness is

110 reliable, in order to provide accurate surface characteristic parameters for the study of
111 land-atmosphere interaction in the plateau region, and to improve the theoretical research level of
112 the near-surface layer in the Tibetan Plateau. In the following section, we describe the case study
113 area, the MODIS remote sensing data, the ground observations, and the land cover map used to
114 drive the revised Massman model (Massman et al, 1997, 1999). In Section 3, we present the
115 results, followed by a validation based on flux measurements on Nagqu station. Finally, we give
116 some concluding remarks on variation characteristics of the aerodynamic roughness lengths on the
117 Nagqu area in the central of the Tibetan Plateau.

118

119 **2 Study area, Data and methods**

120 **2.1 Study area and Data**

121 The area selected in this study is a 200×200km² area centered on the Nagqu Station of
122 Plateau Climate and Environment of the Northwest Institute of Ecology and Environmental
123 Resources, Chinese Academy of Sciences, Northern Tibet Plateau.

124 In this area, there are North Pam (Portable Automated Meso-net) Automatic Meteorological
125 Observatory (NPAM), Nam Co Station for Multisphere Observation and Research, Chinese
126 Academy of Sciences (NAMC), and BJ three meteorological observatories stations (Figure 1).The
127 underlying surface around the observation point is relatively flat on a small spatial scale, and there
128 is a certain undulation at a large spatial scale. The data used included atmospheric turbulence
129 observations and observations from automatic meteorological stations.

130 The BJ station is located at 31.37°N, 91.90°E, and the altitude is 4509m a.s.l. The BJ
131 observation point is located in the seasonal frozen soil area, and the vegetation is alpine grassland.
132 The site measurement equipment includes ultrasonic anemometer (CAST3), CO₂/H₂O infrared
133 open circuit analyzer (LI 7500) and automatic meteorological observation system. (Ma et al., 2006)
134 This study uses the data of BJ station in 2008 and 2012. The NPAM station is located at 31°56'N,
135 91°43'E and has an altitude of approximately 4700m. The ground of the experimental field is flat
136 and the area is wide. The ground is covered by a plateau meadow 15 cm high in summer. The
137 experimental station observation equipment includes ultrasonic wind thermometer and humidity

138 probepulsator, and also includes data on temperature and humidity, air pressure, average wind
139 speed, average wind direction, surface radiation temperature, soil heat flux, soil moisture and
140 temperature, and radiation. (Ma et al., 2006) This thesis uses the NPAM station's 2012 full year
141 data. The NAMC station is located at 30°46.44'N, 90°59.31'E, at an altitude of 4730m. It is
142 located on the southeastern shore of Namco Lake in Namuqin Township, Dangxiong County, Tibet
143 Autonomous Region. It is backed by the Nyainqntanglha Mountain Range and the underlying
144 surface is an alpine meadow. It is a typical semiarid plateau monsoon climate zone. The NAMCO
145 station's 2010 full year data has been used in this study.

146 **Figure 1 about here**

147 **Table 1 about here**

148 The land cover data used in this study is GLC2009 (Arino et al, 2010) data. The data is the
149 retrieved data of Envisat satellite in 2009 with a spatial resolution of 300m and the classification
150 standard is Land Cover Classification System (LCCS). The classification standard divides the
151 global surface into 23 different types, this thesis including the selected areas about 14 kinds. As
152 the actual situation in the selected area does not match the data part of GLC2009, there is no
153 underlying surface such as farmland in the selected area. Therefore, according to the actual land
154 cover types obtained by Chu (Chu, 2010), the names of irrigated farmland, dry farmland, mixed
155 farmland vegetation, mixed multi-vegetation land, closed grassland and open grassland are
156 replaced with 6 grassland, shrub meadows, mountain meadows, alpine grasslands, alpine
157 meadows and sparse vegetation in the mountains. Since the proportion of the underlying surface
158 of the tree as a whole is only 0.36%, the four types of underlying surfaces of the evergreen
159 coniferous forest, the mixed forest, the multi-forest grassland mix and the multi-grass forest land
160 mix will no longer be studied.

161 The satellite data from the MODerate-resolution Imaging Spectroradiometer (MODIS) is an
162 important sensor in the satellites TERRA and AQUA launched by the US Earth Observing System
163 Program. The band of MODIS sensor covers the full spectrum of visible light to thermal infrared,
164 which can detect surface and atmospheric conditions such as surface temperature, surface
165 vegetation cover, atmospheric precipitation, cloud top temperature, etc. The maximum spatial

166 resolution is 250m. The normalized vegetation index obtained by MODIS detection is the
167 MYD13Q1 product from MODIS, which provides a global resolution of 250m per 16 days. This
168 study selects 73 materials for the year of 2008, 2010 and 2012 in Nagqu.

169 **2.2 Methodology**

170 **2.2.1 Method for calculating surface roughness by observation data**

171 Using the measured values of average wind speed and turbulent flux of a single height
172 ultrasonic anemometer, the calculation scheme of surface roughness proposed by Chen et al.
173 (Chen et al., 1993) was selected and the dynamic variation of the surface roughness was obtained.

174 According to the Monin-Obukhov similarity theory (Monin et al., 1954), the wind profile
175 formula with the stratification stability correction function (Panosky et al, 1984) is

$$176 U(z) = \frac{u_*}{k} \left[\ln \frac{z-d}{Z_{0m}} - \psi_m(\zeta) \right] \quad (2.1)$$

$$177 \psi_m(\zeta) = 2 \ln \left(\frac{1+x}{2} \right) + \ln \left(\frac{1+x^2}{2} \right) - \tan^{-1}(x) + \frac{\pi}{2} \quad \zeta < 0 \quad (2.2)$$

$$178 \psi_m(\zeta) = -5\zeta \quad \zeta > 0 \quad (2.3)$$

179 Where: Z_{0m} is the dynamic surface roughness length; z is the observed height; d is zero
180 plane displacement, taken as 0.03m (Yang et al., 2014), calculated from the average vegetation
181 height 0.045m; U is the average wind speed; k is the Karman constant, taken as 0.35;
182 $L = -\frac{u_*^3}{(k \frac{g}{\theta}) \theta' \omega'}$ (Monin et al., 1954 is the Monin-Obukhov length; $x = (1-16\zeta)^{1/4}$;
183 $\zeta = (z-d)/L$ is the atmospheric stability parameter. Available from formula (2.1):

184

$$185 \ln \frac{z-d}{Z_{0m}} = \frac{kU}{u_*} + \psi_m(\zeta) \quad (2.4)$$

186 Using equations (2.2)~(2.4), Z_{0m} can be determined by fitting ζ and observation of a single

187 height $\frac{kU}{u_*}$.

188 **2.2.2 Method for calculating surface roughness by satellite data**

189 For fully covered uniform canopy, Brutsaert suggest that $z_{0m} = 0.13hv$ (Brutsaert, 1982). For
190 the canopy with proportional coverage (partial coverage), according to the research of Raupach
191 (Raupach, 1994), z_{0m}/hv varies with the leaf area index I . However, Pierce et al. (Pierce et al.
192 1992) pointed out that for all kinds of biological groups, leaf area index can be obtained from
193 NDVI, and the density grade of vegetation can be related to NDVI. Asrar et al (Asrar et al., 1992)
194 pointed out that there was mutual relationship between LAI, NDVI and ground cover through the
195 study of physical model. Moran's study (Moran, et al., 1994) gives another way, using a function
196 of the relationship between NDVI and Z_{0m} in the growing season of alfalfa,

197
$$Z_{0m}(x, y) = \exp [C_1 + C_2 NDVI(x, y)] \quad (2.5)$$

198 Where C_1 and C_2 are empirical constants.

199 Considering that the main underlying surface of the study area is grassland, this study selects
200 the Massman model (Massman et al, 1997, 1999) to calculate the Z_{0m} in Nagqu area of central of
201 the Tibetan Plateau. The Massman model is calculated as follows:

202
$$\gamma = C_1 + C_2 \cdot \exp(-C_3 \cdot C_d \cdot LAI) \quad (2.6)$$

203
$$n_{ec} = \frac{C_d \cdot LAI}{2 \cdot \gamma^2} \quad (2.7)$$

204
$$d_h = 1 - \frac{[1 - \exp(-2 \cdot n_{ec})]}{2 \cdot n_{ec}} \quad (2.8)$$

205
$$\frac{Z_{0m}}{h} = [1 - d_h] \cdot \exp\left(-\frac{k}{\gamma}\right) \quad (2.9)$$

206 Among them, $C_1=0.32$, $C_2=0.26$, $C_3=15.1$ is the constant in the model, which is related to
207 the surface drag coefficient, LAI is the leaf area index, $C_d=0.2$ is the liquid surface drag
208 coefficient, n_{ec} is the wind speed profile coefficient of fluctuation in the vegetation canopy, h is the
209 vegetation height. In many earlier studies, it was concluded that the high-altitude environment of
210 the Tibetan Plateau caused a low temperature in the area to which the study was located, and had
211 an effect on the height and sparseness of the vegetation. Based on the previous researches, this
212 study considers that the vegetation height in northern Tibet is related to the normalized differential

213 vegetation index (NDVI) and altitude (Chen et al, 2013), and introduced the altitude correction
214 factor on the original basis. The following is the calculation formula.

$$215 \quad H = h_{\min} + \left(\frac{h_{\max} - h_{\min}}{NDVI_{\max} - NDVI_{\min}} \right) (NDVI - NDVI_{\min}) \quad (2.10)$$

$$216 \quad h = acf \cdot H \quad (2.11)$$

217 Among them, h_{\min} and h_{\max} are the minimum and maximum values of vegetation height
218 observed at the observation station, and $NDVI_{\max}$ and $NDVI_{\min}$ are the maximum and minimum
219 values of NDVI of the observation station. H is based on the assumption that the vegetation height
220 is directly proportional to the NDVI. x is the altitude and is obtained from ASTER's DEM
221 products. acf is the altitude correction factor (Sun et al., 2016), which is used to characterize the
222 effect of altitude elevation on the height of vegetation in northern Tibet. Its form is:

$$223 \quad acf = \begin{cases} 0.149, & x > 4800 \\ 11.809 - 0.0024 \cdot x, & 4300 < x < 4800 \\ 1.49, & x < 4300 \end{cases} \quad (2.12)$$

224 The LAI used in this thesis is calculated by the NDVI of MODIS. The calculation formula is:

$$225 \quad LAI = \left(\frac{NDVI * (1 + NDVI)}{1 - NDVI} \right)^{0.5} \quad (2.13)$$

226 3 Result analysis

227 3.1 The variation characteristics of surface roughness by using measured data

228 Figure 2 shows the temporal variation characteristics of surface roughness of sites in different
229 years in Nagqu area. It can be seen that $Z0m$ value has continued to increase since February to
230 reach a maximum in July and August. The BJ station and the NPAM station in 2012 show that
231 July is slightly larger than that in August, the 2010 NAMCO station and the 2008 BJ station in
232 August is bigger than July. The BJ station may have a precipitation process in July 2008, resulting
233 in a July $Z0m$ value less than June. After August, $Z0m$ began to decrease, and the value of
234 December was about the same as the value of January. In general, the change of $Z0m$ degree of
235 each station increases from spring to summer and decreases month by month from summer to
236 winter.

237

Figure 2 about here

238

239 **3.2 Spatiotemporal variation characteristics of surface roughness length**
240 **retrieved of MODIS data**

241 Figure 3 is a plot of surface roughness distribution of $200 \times 200 \text{ km}^2$ around the BJ site in
242 2008. In February, the Z0m decreased from January, which may be due to snowfall, temperature,
243 etc., resulting in a small Z0m and continued to decrease. Due to the rising temperature of snow
244 melting, Z0m showed a slowly increasing trend from February to May, and Z0m showed a rapid
245 increase from June to August. From June onwards, a large number of surface textures are presented,
246 indicating the complexity of the underlying surface. Whether it is the bulk surface or the
247 vegetation, it will have an important impact on Z0m. From May to August, due to the obvious
248 changes in humidity, temperature and pressure caused by the plateau summer monsoon, the height
249 and coverage of surface vegetation increased, and Z0m peaked in August. In particular, the change
250 from May to June is very significant. It may be due to the beginning of the summer monsoon in
251 June, which led to the increase of precipitation, which accelerated the growth of vegetation and
252 the rapid rise of Z0m. In June, July and August, due to continuous precipitation and rising
253 temperature, the vegetation growth flourishes, but it does not change after the growth to maturity.
254 Corresponding to the maximum value of Z0m in the figure, but due to sufficient moisture, Z0m
255 gradually expanded during the three months, reaching the maximum range in August in the large
256 area. From September to December, as the plateau summer monsoon subsides, the temperature
257 and humidity are gradually reduced. Compared with the plateau summer monsoon, the vegetation
258 is no longer suitable for vegetation growth, the contribution of vegetation to Z0m is weakened,
259 and the surface vegetation height and coverage gradually decreases, and thus, Z0m continues to
260 decrease, and the range of large-value regions also gradually decreases.

261

Figure 3 about here

262

Figure 4 about here

263

Figures 4 and 5 respectively show the retrieved monthly surface roughness in the BJ area
264 in 2010 and 2012. It can also be seen that the Z0m also showed a decrease from January to
265 February in the Nagqu area in 2010 and 2012. Since February, Z0m has started to increase. Since

266 June, Z0m has grown rapidly and reached the peak of the whole year in August. After that, Z0m
267 began to decrease.

268 **Figure 5 about here**

269 It can also be seen from Fig. 3, Fig. 4, Fig. 5 that Z0m changes with spatial and temporal
270 scale. Z0m shows different trends on different underlying surfaces. It is worth noting that in
271 November 2008, the Z0m in the Nagqu area was small overall, generally as low as 1 cm.
272 According to historical data, it is known that there is a large-scale snowfall process in the Naqu
273 area at this time. The snowfall of the meadow causes the underlying surface of the meadow to be
274 homogeneous and flat, and after the snowfall falls, it is easy to form a block, scattered and
275 discontinuous underlying surface. And it can be obtained later that the surface roughness of the
276 area with ice and snow as the underlying surface is not more than 1 cm, which is consistent with
277 the historical weather process. So think that snowfall caused the Z0m in November to be very
278 small. And from November to December, Z0m showed a growing trend, which may be due to
279 temperature, soil unfrozen or other reasons, resulting in the melting of snow, and then the surface
280 roughness showed a growing trend (Zhou, 2017).

281 3.3 Evaluation of satellite data retrieved results

282 **Figure 6 about here**

283 The underlying surfaces of the three sites selected in this thesis are all alpine meadows. In
284 Figure 6, the NPAM site data calculation results are larger than the satellite data retrieved results
285 throughout the year, only September and October are very close, and the trend is similar. The
286 maximum value of the site data calculation is 5cm and the satellite data retrieved result is 4.5cm
287 maximum. The maximum difference is in May, which is 1.7cm. The NAMCO station data
288 calculation results are very close to the satellite data retrieved results from April to November, but
289 the satellite data retrieved results in January, March and December are significantly larger than the
290 site data calculation results. The biggest difference appears in January, and the difference value is
291 up to 1.5cm. In 2008, the calculation results of BJ station data were larger than the satellite data
292 retrieved results throughout the year. The calculation results of the site data were very close to the
293 satellite data retrieved results from January to April, July to November, but there was a big
294 difference between the May June and December, and the biggest difference occurred in May, with
295 a difference of 1.8 cm. In 2012, BJ's site data calculation results were consistent with the satellite

296 data retrieved results for the whole year, but the site data calculation results were larger than the
297 satellite data retrieved results from March to June, and the station data calculation results were
298 smaller than the satellite data retrieved at other times. As a result, the largest difference occurred
299 in June with a difference of 1.1 cm. It can be seen from Figure 6 that, in the overall situation, in
300 January, February, March, November and December, the seasonal variation trend of the site data
301 calculation results is consistent with the satellite data retrieved results. However, the site data
302 calculation results from April to October are greater than the satellite data retrieved results. From
303 Fig. 6 the Z0m calculated from the site observation data is larger than the satellite data, which may
304 be because the average smoothing effect. It is worth noting that from February to July, the single
305 point Z0m value was significantly increased according to the independent method of determining
306 the surface roughness, while the results obtained by using the satellite data did not increase
307 significantly. The satellite results show that the January to May, November, and December are
308 basically stable below 2cm, and only change from June to October; this is related to the
309 overlapping averages effect of satellite data retrieved. In general, the results calculated by the
310 station are generally larger than those obtained by satellite retrieved.

311 **Figure 7 about here**

312 The Z0m scatter plot is shown in Figure 7. It can be seen that there is a significant positive
313 correlation between the satellite data and the surface roughness calculated from the site data. The
314 correlation coefficient between the observation result and the retrieved result is different from that
315 of the NAMCO station in 2010 in Fig. 7(g), and the others are large. It shows that the average
316 result of the underlying surface smoothes the same underlying surface results in different regions,
317 further indicating that the satellite retrieved results are more similar to the site calculation results.
318 However, the results of the NAMCO site are different from those of other sites. The correlation
319 coefficient with the results of the underlying surface is 0.83288, and the correlation coefficient
320 with the satellite retrieved results is 0.61554. Or because the Namco Observation Station is closer
321 to the lake (1km), it is more affected by local microclimate such as lake and land winds. The
322 results in Figure 7 all passed the F test of $P = 0.05$. It indicates that there is no significant
323 difference between the site data calculation results and the satellite data retrieved results.

324 **4 Variation characteristics of surface roughness of different
325 underlying surfaces**

326 According to the vegetation data GLC2009 combined with local actual conditions, the
327 200×200km² area of Nagqu was divided into 10 different underlying surfaces (Arino et al., 2010),
328 namely: mountain grassland, shrub meadow, mountain meadow, alpine Grasslands, alpine
329 meadows, sparse vegetation lap, urban land, bare land, water bodies, ice sheets and snow covers.

330

331 **Figure 8 about here**

332 The monthly variation of Z0m in different underlying surfaces in Nagqu area is shown in Fig.
333 8. According to the figure, 14 different underlying surfaces in the Nagqu area can be divided into
334 four categories. The first category is urban land, accounting for 0.07% of the whole study area. All
335 the time of the year is greater than the Z0m of other underlying surfaces, and the change of Z0m is
336 very large, probably due to the irregular changes in the underground areas of the selected areas
337 and the irregularities caused by human activities. The second category is lush grassland, including
338 shrub meadows, mountain grasslands, alpine grasslands and mountain meadows, which account
339 for 62.49% of the area. The variation curves of the four underlying surfaces Z0m are similar, and
340 are only smaller than the urban land compared with other underlying surfaces. The third category
341 is sparse grassland, including alpine sparse vegetation, alpine meadows and bare land, accounting
342 for 33.74% of the area. The Z0m of the three underlying surfaces are similar, at a medium height.
343 The Z0m of the bare soil is at the lowest point of these underlying surface Z0m, and the Z0m of
344 the alpine meadow is relatively stable and less affected by the outside. The fourth category is ice
345 and snow, including ice sheets and snow cover, water bodies two kinds of underlying surfaces,
346 accounting for 3.7% of the area. The Z0m of these three underlying surfaces presents another
347 phenomenon. The variation range of the whole year is relatively small, and the Z0m of these
348 underlying surfaces is also small. It is more than 1cm in mid-June, and other times Z0m is less
349 than 1cm. Figure 8(d) shows the multi-year average seasonal variation of Z0m. It can be clearly
350 seen from the figure that the underlying surface can be divided into four categories due to the
351 difference in surface roughness. And the change from January to May Z0m is very small, peaking
352 from May to August, and then down to the previous January to May level in November and

353 December. Due to the snowfall in November 2008, it may lead to the low level of November in
354 Figure 8(d). In fact, the surface roughness on November should be higher than that on December
355 in former years.

356 It can also be seen from Fig. 8 that in the Nagqu area, except for the area of the fourth type of
357 underlying surface, the Z0m change in other areas decreases from January to February, and begins
358 to increase after February, reaching the peak on August, then starting to decrease. However, it can
359 be clearly seen from Fig. 6 that there are several stages in which Z0m changes significantly, in
360 early April, mid-May, early July, late August, and late September. The change at the end of August
361 was the most obvious. Each of the underlying surfaces Z0m changes by more than 2 cm on
362 average. The extent of the change in late September was also large, with an average change of
363 more than 1.5 cm. It should also be pointed out that the change in early July was special because
364 the change resulted in a significant increase in the Z0m of water bodies and ice.

365 It is worth noting that due to factors such as cloud cover, May, August, and November of
366 2008; August and September of 2010; April and July of 2012, the overall Z0m has changed
367 significantly. This resulted in two very significant changes in August and November on the
368 three-year average. In November, according to other meteorological data, it was caused by
369 snowfall. The reason for the August change caused by 2008 and 2010, through analyzing to the
370 Z0m of the water body and the ice and snow surface suddenly increased, was caused by
371 precipitation. Combined with several changes in Z0m, it can be analyzed that precipitation,
372 snowfall, and snow accumulation will make the underlying surface more uniform and flat, and the
373 Z0m will also be relatively reduced.

374 **5 Conclusion and discussion**

375 Through the calculation and analysis of the surface roughness of the Nagqu area in the
376 central of the Tibetan Plateau, and comparing the retrieved of the satellite data with the calculation
377 results of the observational data, the attained main conclusions are as follows:

378 (1) The retrieved results of the satellite data are basically consistent with the calculated
379 results of the measured data. Both indicate that the surface roughness has continued to increase
380 from February to August, and began to decrease after reaching the peak in August, and reached the

381 lowest value in February of the following year. There is a lot of connection between the monthly
382 variation of surface roughness and the changes of meteorological elements brought by the plateau
383 summer monsoon. Among them, the satellite surface retrieved results in a slow increase in surface
384 roughness from February to May.

385 (2) Through the characteristics of surface roughness variation retrieved by satellite data, the
386 underlying surface can be divided into four categories according to the surface roughness, from
387 large to small, urban, lush grassland, sparse grassland and ice and snow. Among them, lush
388 grassland accounts for 62.49%, Z_{0m} can reach 6cm, sparse grassland accounts for 33.74%, Z_{0m} can
389 reach up to 4cm, ice and snow account for 3.7%, and Z_{0m} does not exceed 1cm.

390 (3) Comparing the results of satellite retrieved calculation, satellite retrieved results and
391 measured data, the results are positively correlated, and the satellite retrieved results is better
392 fitting with the measured results. Due to the average sliding effect of the retrieved, the satellite
393 retrieved data is smaller than the measured results. This method can be used to calculate the
394 surface roughness results for a region and provide a true value for the model for simulation.

395 Through the study of surface roughness, it is beneficial to obtain the surface feature
396 parameter values on the region, provide the ground truth value for the model input, improve the
397 simulation level of the model in the Tibetan Plateau, and deepen the understanding of the
398 land-atmosphere interaction process.

399 **Acknowledgements:**

400 This work was financially supported by the Second Tibetan Plateau Scientific Expedition and
401 Research (STEP) program (Grant No. 2019QZKK0103), the National Natural Science Foundation
402 of China (Grant No. 41675106) and National key research and development program of China
403 (2017YFC1505702)

404 **References:**

405 Arino O, Ramos J, Kalogirou V, et al.“Glob Cover 2009” [R].Edinburgh, UK: Proceedings of the
406 living planet Symposium, 2010.
407 Asrar , G ., Myneni , R.B.and Chaudhury , B.J., 1992, Spatial heterogeneity in vegetation canopies
408 and remote sensing of observed photosynthetically active radiation:a modeling study ,

409 Ren.Sens.Env ., 41, 85~ 103.

410 Brutsaert , W.A ., 1982, Evaporation into the Atmosphere , Dordrecht in Holland , D .Reidel

411 Publishing Company,113 ~ 121.

412 Chen, J.Y., Wang, J.M., Mitsuaki, H., 1993. An independent method to determine the surface

413 roughness length. Chin. J. Atmos. Sci. 1993, 17, 21–26.

414 Chen Q., L. Jia, R. Hutjes, M. Menenti, 2015, Estimation of Aerodynamic Roughness Length over

415 Oasis in the Heihe River Basin by Utilizing Remote Sensing and Ground Data, Remote Sensing,

416 2015, 7(4), 3690-3709; doi:10.3390/rs70403690.

417 Chen X., et al, 2013. An improvement of roughness height parameterization of the Surface Energy

418 Balance System (SEBS) over the Tibetan Plateau[J]. Journal of Applied Meteorology and

419 Climatology, 52(3): 607-622.

420 Guan X., Huang J., et al, 2009. Variability of soil moisture and its relationship with surface albedo

421 and soil thermal parameters over the Loess Plateau[J]. Advances in Atmospheric Sciences, 26(4):

422 692-700, doi: 10.1007/s00376-009-8198-0.

423 Irannejad P, Shao Y P, 1998. Description and validation of the atmosphere-land-surface interaction

424 scheme(ALSIS)with HAPEX and Cabauw data[J]. Global Planet Change, 19(1): 87-114.

425 Jane Q, 2008. The third pole[J]. Nature, 454(24): 393-396.

426 Ma Y., Tsukamoto O, Wang J., et al, 2002. Analysis of aerodynamic and thermodynamic

427 parameters on the grassy marshland surface of Tibetan Plateau[J]. Progress in Natural Science,

428 12(1): 36-40.

429 Massman W., 1997. An analytical one-dimensional model of momentum transfer by vegetation of

430 arbitrary structure[J]. Boundary-Layer Meteorology, 83(3): 407-421.

431 Massman W., 1999. An analytical one-dimensional second-order closure model of turbulence

432 statistics and the Lagrangian time scale within and above plant canopies of arbitrary structure[J].

433 Boundary-Layer Meteorology, 91(1): 81-107.

434 Monin A., Obukhov A., 1954. Basic laws of turbulent mixing in the atmosphere near the ground[J].

435 Tr Akad Nauk SSSR Geofiz Inst, 24(15): 163-187.

436 Moran, M .S ., Clarke , T .H., Inone, Y.et al., 1994, Estimating crop water deficit using the relation

437 between surface-air temperature and spectral vegetation index, *Rem .Sens. of Env .*, 49 , 246 ~
438 263.

439 Panosky H., Dutton J., 1984. *Atmospheric Turbulence: Models and Methods for Engineering*
440 *Applications*[M]. New York: John Wiley, 1-399.

441 Pierce , L.L., Walker, J., Downing , T .I.et al., 1992, *Ecological change in the Murry -Darling*
442 *Basin-III :A simulation of regional hydrological changes* , *Journal of Applied Ecology* , 30, 283~
443 294.

444 Raupach, M .R., 1994, *Simplified expressions for vegetation roughness leng h and zero-plane*
445 *displacement as functions of canopy height and area index* , *Boundary -Layer Meteor* , 71, 211-
446 216.

447 Shao Y., 2000. *Phtsics and Modeling of Wind Erosion*[M]. London: Kluwer Academic Publishers,
448 1-452.

449 Stull B R, 1991. *An Introduction to Boundary Layer Meteorology*[M]. Beijing: China
450 Meteorological Press, 1-737.

451 Tao S., Chen, L., Xu X., et al, 1998. *Progresses of the Theoretical Study in the Second Tibetan*
452 *Plateau Experiment of Atmospheric Sciences(PartI)*[M]. Beijing: China Meteorological Press,
453 1-348.

454 Wu G., Zhang Y., 1998. *Tibetan Plateau forcing and timing of the Monsoon onset over south Asia*
455 *and the south China sea*[J]. *Monthly Weather Review*, 4(126): 913-927.

456 Xun X., Hu Z., Ma Y., 2012. *The dynamic Plateau Monsoon Index and its association with*
457 *general circulation anomalies*[J]. *Advances in Atmospheric Sciences*, 29(6): 1249-1263,
458 DOI: 10.1007/s00376-012-1125-9.

459 Ye D., Wu G., 1998. *The role of heat source of the Tibetan Plateau in the general circulation*[J].
460 *Meteorological and Atmospheric Physics*, 67(1): 181-198.

461 Chen J., Wang J., Yasushi M., 1993. *An Independent, Method to Determine the Surface Roughness*
462 *Length*[J]. *Scientia Atmospherica Sinica*, 17(01): 21-26. (in Chinese with English abstract)

463 Chu D., Basabta S., Wang W., et al, 2010. *Land Cover Mapping in the Tibet Plateau Using*
464 *MODIS Imagery*[J]. *Resources Science*, 32(11): 2152-2159. (in Chinese with English abstract)

465 Jia L., Wang J., Hu Z., 2000. The Characteristics of Roughness Length for Heat and Its Influence
466 on Determination of Sensible Heat Flux in Arid Zone[J]. Plateau Meteorology, 19(04): 495-503.
467 (in Chinese with English abstract)

468 Li F., Li S., Chen T., 2004. A Study on Developoment of the Tibetan North Grasslands Tourism
469 Stockbreeding in Naqy Tibet[J]. Sichuan Caoyuan, 109(12): 38-42. (in Chinese with English
470 abstract)

471 Li J., Hong Z., Sun S., 2000. An Observational Experiment on the Atmospheric Boundary Layer in
472 Gerze Area of the Tibetan Plateau[J]. Chinese Journal of Atmospheric Sciences, 24(03): 301-312.
473 (in Chinese with English abstract)

474 Li L., Chen X., Wang Z., et al, 2010. Climate Change and Its Regional Differences over the
475 Tibetan Plateau[J]. Advances in Climate Change Research, 6(03): 181-186. (in Chinese with
476 English abstract)

477 Liu J., Zhou M., Hu Y., 2007. Discussion on the Terrain Aerodynamic Roughness[J]. Ecology and
478 Environment, 16(06): 1829-1836. (in Chinese with English abstract)

479 Ma Y., Wang J., et al, 2002. Analysis of Aerodynamic and Thermodynamic Parameters on the
480 Grassy Marshland Surface of Tibetan Plateau[J]. Peogress in Natural Science, 12(01): 36-40. (in
481 Chinese with English abstract)

482 Ma Y., Yao T., Wang J., et al, 2006. The Study on the Land Surface Heat Fluxes over
483 Heterogeneous Landscape of the Tibetan Plateau[J]. Advances in Earth Science, 21(12):
484 1215-1223. (in Chinese with English abstract)

485 Su B., Zhao M., Ren J., 1999. Influence of Scalar Roughness Lengths on the
486 Biosphere-Atmosphere Transfer[J]. Chinese Journal of Atmospheric Sciences, 23(03): 349-358.
487 (in Chinese with English abstract)

488 Sun G., 2016. The Upscaling Analysis of Surface Fluxes of Alpine Grassland over the in Northern
489 Tibetan Plateau[D]. Lanzhou: Cold and Arid Regions Environmental and Engineering Research
490 Institute Chinese Academy of Science, 1-134. (in Chinese with English abstract)

491 Wang J., 1999. Land Surface Process Experiments and Interaction Study in China-from HEIFE to
492 Imgrass and GAME-TIBET/TIPEX[J]. Plateau Meteorology, 18(03): 280-294. (in Chinese with

493 English abstract)

494 Wu G., Liu Y., Liu X., et al. 2005. How the heating over the Tibetan Plateau affects the Asian
495 climate in summer[J]. Chinese Journal of Atmospheric Sciences, 29(1): 47-56. (in Chinese with
496 English abstract)

497 Wu G., Mao J., Duan, A., et al., 2004. Recent progress in the study on the impact of Tibetan
498 Plateau on Asian summer climate[J]. Acta Meteorologica Sinica, 62(5): 528-540. (in Chinese
499 with English abstract)

500 Wu G., Zhang Y., 1999. Thermal and Mechanical Forcing of the Tibetan Plateau and Asian
501 Monsoon Onset.Part II :Timing of the Onset[J]. Chinese Journal of Atmospheric Sciences,
502 23(01): 52-62. (in Chinese with English abstract)

503 Wu X., Ma W., Ma Y., 2013. Observation and Simulation Analyses on Characteristics of Land
504 Surface Heat Flux in Nothern TibetanPlateau in Summer[J]. Plateau Meteorology, 32(05):
505 1246-1252. (in Chinese with English abstract)

506 Yang M., Yao T., 1998. A Review of the Study on the Impact of Snow Cover in the Tibetan
507 Plateau on Asian Monsoon[J]. Journal of Glaciology and Geocryolgy, 20(2): 90-95. (in Chinese
508 with English abstract)

509 Yang Y., Li M., Hu Z., et al., 2014. Influence of surface roughness on surface-air fluxes in alpine
510 meadow over the Norther TibetanPlateau[J].Plateau Meteor, 33(3): 626-636. (in Chinese with
511 English abstract)

512 Zhang Q., Lv S., 2003. The Determination of Roughness Length over City Surface[J]. Plateau
513 Meteorology, 22(01): 24-32. (in Chinese with English abstract)

514 Zhang Y., Wu G., 1998. Diasnostic Investigations of Mechanism of Onset of Asian Summer
515 Monsoon and Abrupt Seasonal Transitions Over Northern Hemisphere PartI[J]. Acta
516 Meteorologica Sinica, 56(5): 2-17. (in Chinese with English abstract)

517 Zhou X., Zhao P., Chen J., et al, 2009. Impacts of Thermodynamic Processes over the Tibetan
518 Plateau on the Northern Hemispheric Climate[J]. Sci China Ser D-Earth Sci, 39(11): 1473-1486.
519 (in Chinese with English abstract)

520 Zhou, Y., Ju, W., Sun, X., Wen, X., Guan, D. 2012 Significant decrease of uncertainties in sensible

521 heat flux simulation using temporally variable aerodynamic roughness in two typical forest
522 ecosystems
523 of China. J. Appl. Meteorol. Climatol. 2012, 51, 1099–1110.
524 Zhou Y., Xu W., Bai A., et al, 2017. Dynamic Snow-melting Process and its Relationship with Air
525 Temperature in Tuotuohe, TibetanPlateau[J]. Plateau Meteorology, 36(1): 24-32. (in Chinese
526 with English abstract)
527

528 Figure captions
529 Fig. 1 The location of sites and the land cover on the northern of the Tibetan Plateau. The black
530 solid circle '●' is location of the sites
531 Fig. 2 The surface roughness length of different site on the northern of the Tibetan Plateau
532 Fig. 3 The surface roughness length on the northern of the Tibetan Plateau in 2008
533 Fig. 4 The surface roughness length on the northern of the Tibetan Plateau in 2010
534 Fig. 5 The surface roughness length on the northern of the Tibetan Plateau in 2012
535 Fig. 6 Comparison of surface roughness length by site observation and satellite remote sense
536 retrieved
537 Fig. 7 Site surface roughness length scatter plot
538 Fig. 8 The curve of the surface roughness length in different underlying surface
539

540 Tables

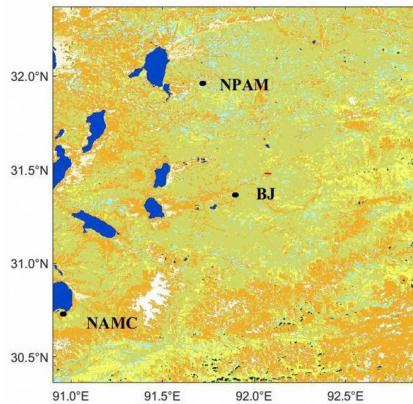
541 Table. 1 The legend of the land cover map on the northern of the Tibetan Plateau

Value	Color	Land Cover Types	Percent (%)
11		Mountain grassland	5.79
14		Shrub meadow	3.25
20		Mountain meadow	8.26
30		Alpine grassland	45.16
70		Needleleaved evergreen forest	0.23
100		Mixed forest	0.03
110		Mixed forestland and grassland	0.06

542

Value	Color	Land Cover Types	Percent (%)
120		Mixed grassland and	0.04
140		Alpine meadow	28.28
150		Alpine sparse vegetation	0.29
190		Urban areas	0.07
200		Bare areas	4.90
210		Water bodies	2.57
220		Permanent Snow and ice	1.07

543

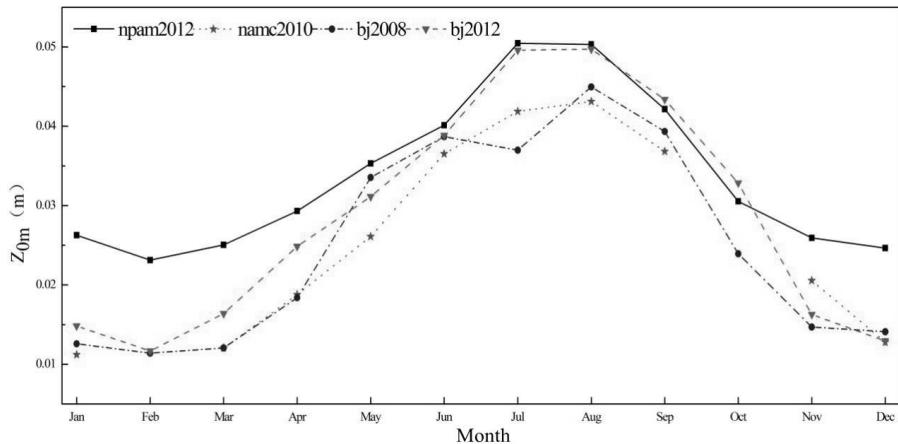

544

545

546

547

548



549

550 Fig. 1 The location of sites and the land cover on the northern of the Tibetan Plateau. The black

551 solid circle '●' is location of the sites.

552

553

554 Fig. 2 The surface roughness length of different site on the northern of the Tibetan Plateau

555

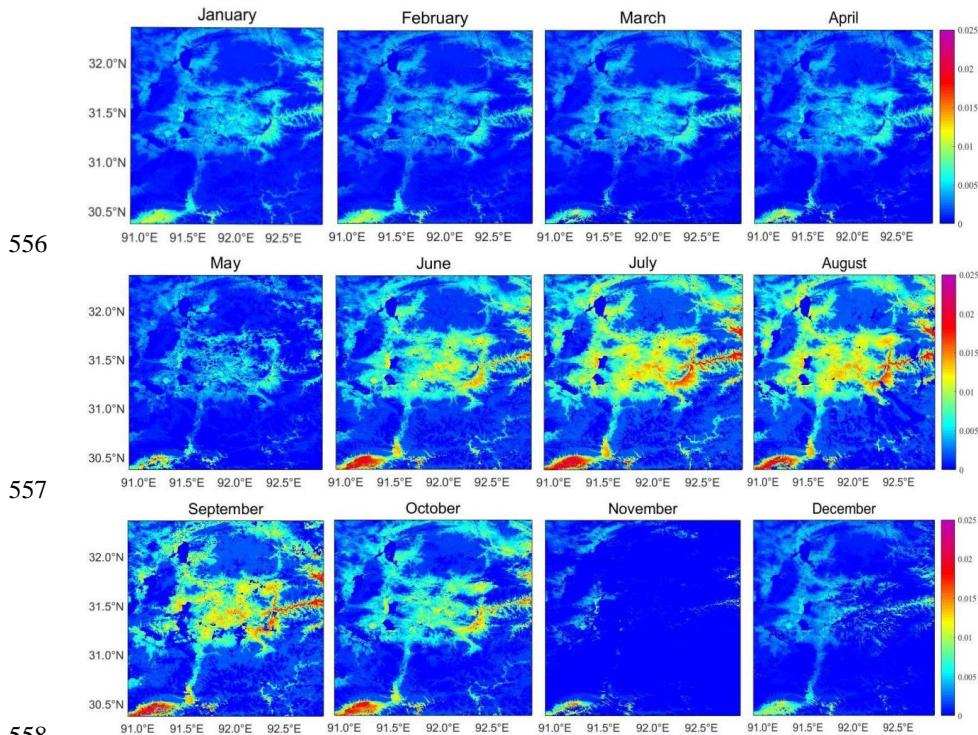


Fig. 3 The surface roughness length on the northern of the Tibetan Plateau in 2008

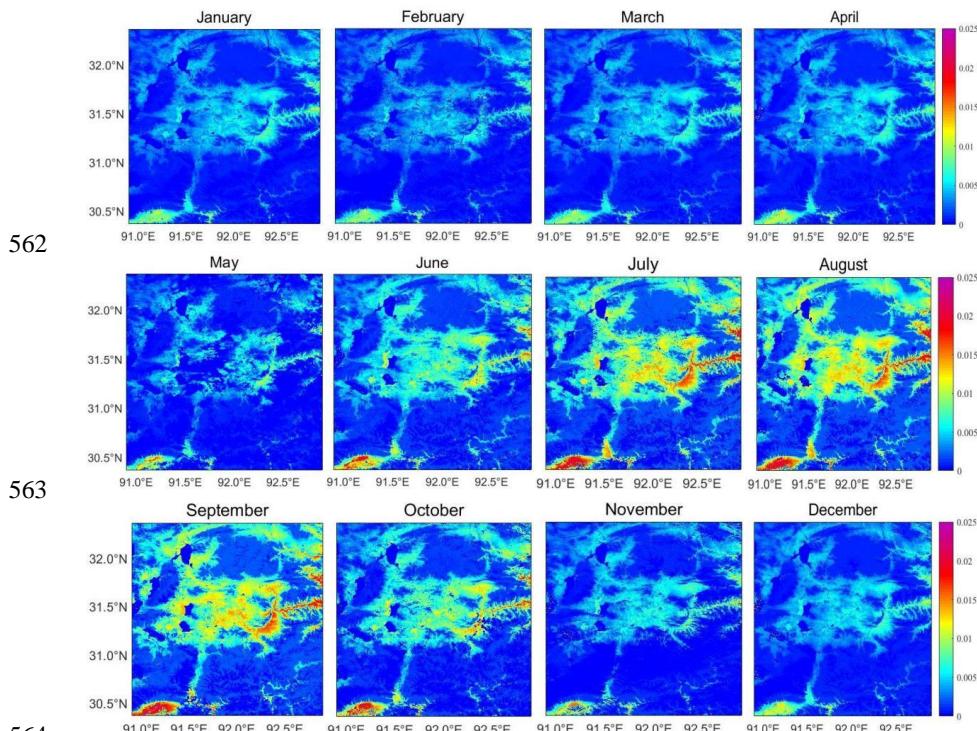


Fig. 4 The surface roughness length on the northern of the Tibetan Plateau in 2010

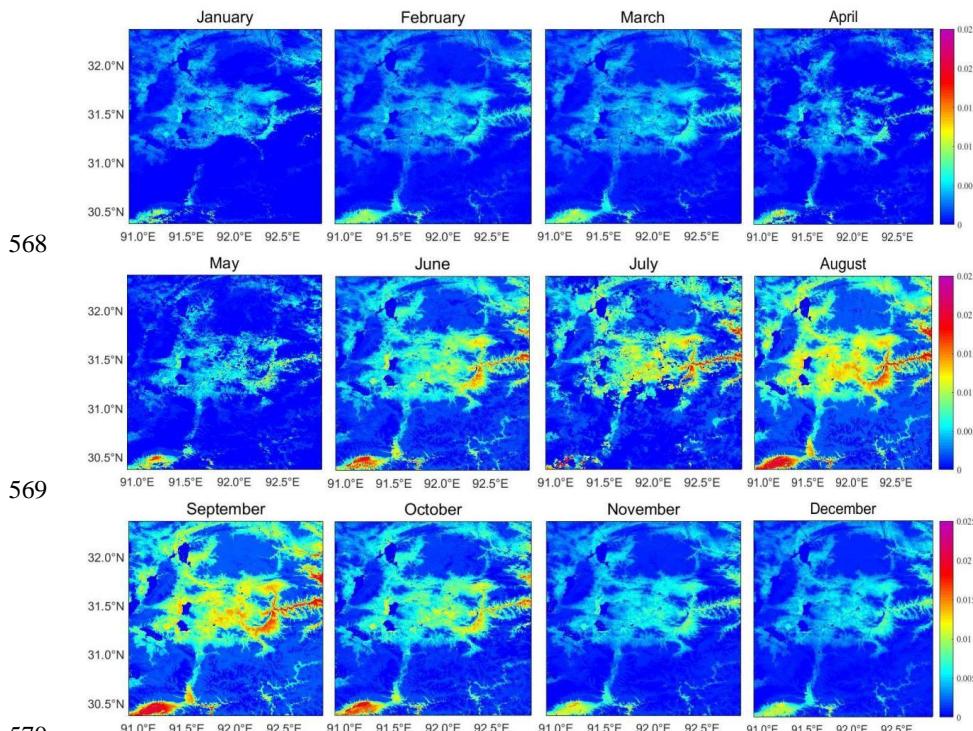
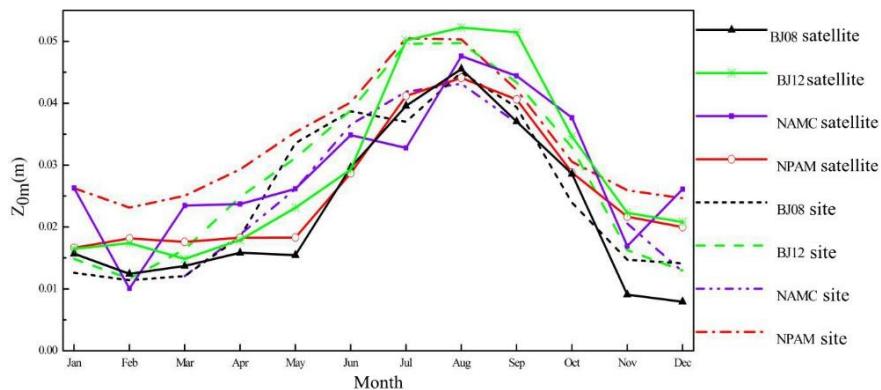
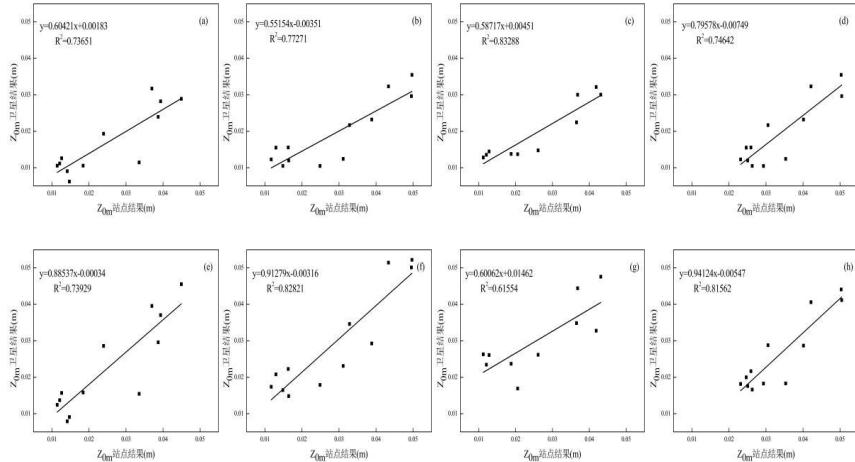



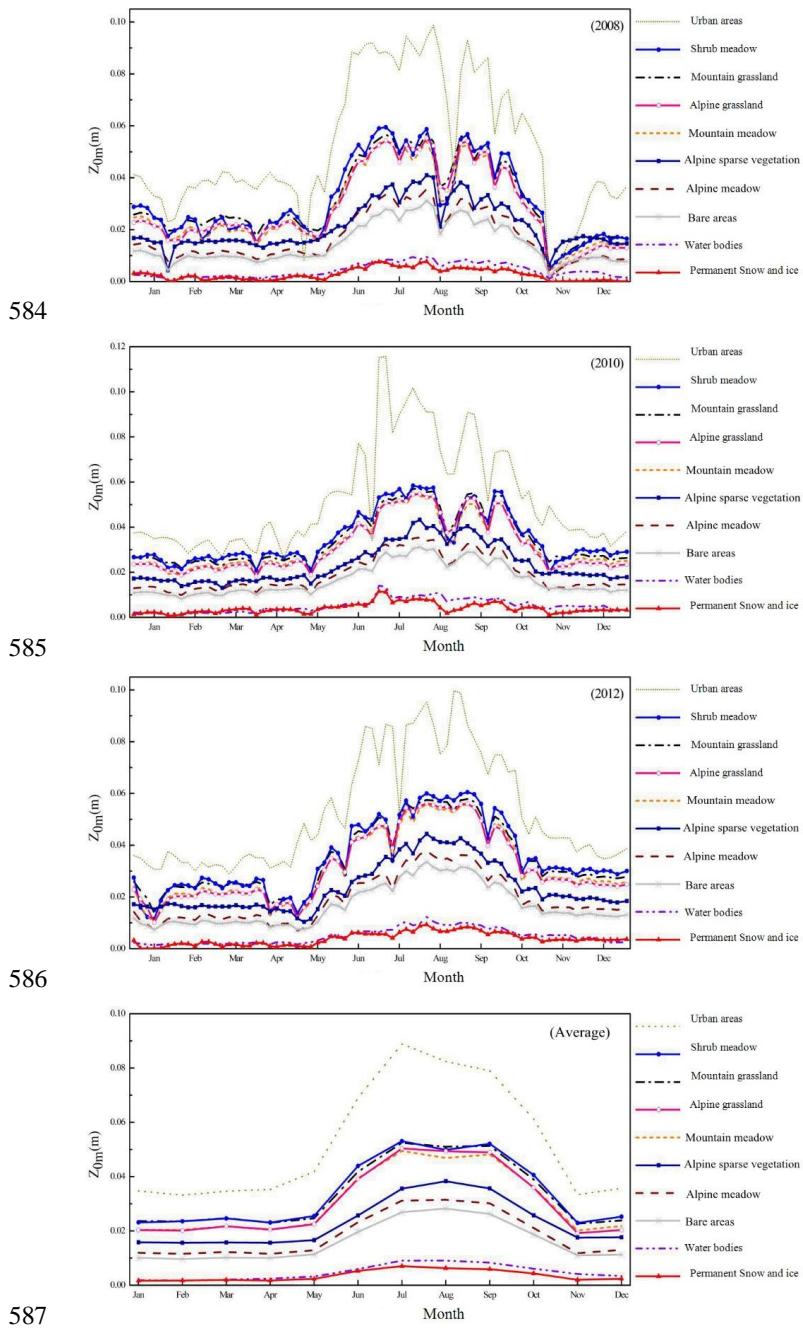
Fig. 5 The surface roughness length on the northern of the Tibetan Plateau in 2012

573


574 Fig. 6 Comparison of surface roughness length by site observation and satellite remote sense

575 retrieved

576



577

578

579 Fig. 7 Site surface roughness length scatter plot
580 (a-d: scatter plot of the observation results and the average result of the underlying surface; e-h:
581 scatter plot of the observation and retrieved results; a,e: BJ station in 2008; b,f: BJ station in 2012;
582 c,g: NAMC station in 2010; d,h: NPAM station in 2012)
583

584

585

586

587

588 Fig. 8 The curve of the surface roughness length in different underlying surface

589